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LETTER TO THE EDITOR 

Two-dimensional turbulence with the lattice Boltzmann 
equation 
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$ IBM European Center for Scientific and Engineering Computing, via Giorgione 159, 
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Received 16 August 1989 

Abstract. We investigate the ability of the lattice Boltzmann equation to reproduce the 
basic physics of fully turbulent two-dimensional flows and present a qualitative estimate 
of its computational efficiency with respect to other conventional techniques. 

There is growing theoretical and numerical evidence that lattice gas automata ( LGA) 

simulate the dynamics of turbulent flows quite accurately in the sense that they give 
the same quantitative results as compared with direct numerical simulations of the 
Navier-Stokes equations. LGA can enhance our understanding of physics in a variety 
of different problems, ranging from non-equilibrium statistical mechanics to the 
dynamics of fluid flows in very complex geometries. On the other hand, regarding 
turbulent flows in a relatively simple geometry, LGA are not computationally as efficient, 
at least for general purpose computers, as other well established numerical techniques 
like finite differences or spectral methods. 

Recently, McNamara and Zanetti (1988) and Higuera and Jimenez (1989) have 
pointed out that the lattice Boltzmann equation ( L B E )  can be a possible efficient tool 
to simulate two- and three-dimensional flows. Pursuing this idea, Higuera et a1 (1989) 
have improved this approach, showing that it is possible to generalise the LBE for 
arbitrary values of the Navier-Stokes parameters in order to increase the efficiency of 
the method. In this letter we investigate this idea on quantitative grounds, in order to 
estimate the efficiency of the LBE and also to understand its intrinsic limitations. To 
this end, we have chosen the case of two-dimensional flows contained in a square box 
with periodic boundary conditions. The efficiency of the LBE has been tested against 
spectral methods, which are known to be probably the most efficient method for this 
kind of problem. 

According to Higuera er a1 (1989), we can write the LBE in the following way: 

N,( t + 1, x + c,) = Ni(  t, x) + 
where 
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In equation (1) NI is the mean particle population in the ith state; p = Cp NI is the 
density of the fluid; pu, =E! c,,N, is the momentum density; b is the number of 
automata states per site; D is the dimension of the lattice and F, is an external force 
acting on the system (for a review of LGA see Frisch et a1 1986, 1987). We have 
considered the case of a four-dimensional face-centred hypercubic lattice ( FCHC) 

projected into two dimensions, in which case b = 24. Equation ( 1 )  is obtained by 
expanding the nonlinear collision operator of the LBE up to second order in the velocity 
field (for details see Higuera and Jimenez (1989) and McNamara and Zanetti (1988)). 
The matrix A,, satisfies the constraint of mass conservation (C, A,, = 0) and momentum 
conservation (E, A,,c, = 0). Because of these constraints, and the symmetries of the 
lattice, A,, has only three independent eigenvalues, A, 7 and U, which can be chosen 
arbitrarily. In particular, the viscosity of the fluid depends on A only through the 
relation Y = (2+ A)/6A. After projection of the original four-dimensional lattice into 
two dimensions, only nine independent populations are involved in the computations. 

Following Frisch et a1 (1987), from equation ( 1 )  one can derive the equations 

where the index a refers to the automata units and g = G/3. By performing the 
rescaling : 

va = UOV (30 )  

x, = lox (36) 

we finally obtain the Navier-Stokes equations: 

1 

P 
a,v+ v .  a v =  --ap+vAv+F. (4) 

As a first insight into the efficiency of the method, we have compared the numerical 
results of ( 1 )  against a spectral simulation of (4). For both cases we have chosen 
Y = 0.05 corresponding to A = -1.849. The resolution is 64 x 64 and the forcing term 
is F = (cos 4x, 0). This value implies lo=?.rr = 10.18 and U,=&. The time step for 
the spectral simulation is 0.01 and one step in ( 1 )  corresponds to & time units of (4) 
according to ( 3 c ) .  The time marching scheme for the spectral code is a predictor- 
corrector Eulero-Cauchy method. No de-aliasing has been performed in the spectral 
simulation. 

The time series of the energy E and the enstrophy R for both the LBE and the 
Navier-Stokes equation are shown in figure 1. As we can see, both average and 
fluctuations of E and R agree quite well. In order to get a precise idea of the accuracy 
of the method we have performed a numerical simulation at a resolution 128 x 128 
with the same values for the other parameters. In figure 2 we show the energy spectrum 
for both the LBE and the spectral simulation. Because the resolution is much larger 
than what is needed for this value of the Reynolds number, at very high wavenumbers 
we observe a rather flat spectrum. The important point is that the beginning of this 
flat spectrum is at the same wavenumber for both cases. 

Having tested the numerical accuracy of the algorithm, we now discuss some 
computational details. The number of floating point operations for one step of the 
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Figure 1. Time evolution of the total energy and 
enstrophy for the spectral (broken curve) and LBE 

(full curve) models. 

Figure 2. Energy spectra of the spectral (full curve) 
and L E E  (broken curve) simulations on a 128' grid. 

LBE is about 150N2 where N is the linear size of the domain. For the spectral simulation 
one time step, without de-aliasing, requires approximately 50 N 2  log, N operations. 
The time step for the LBE in physical units is Ata = & while for the spectral method 
we have Ats = 0.01. On a single processor of the IBM 3090 vector multiprocessor we 
measured about 60 ms/step for the LBE and about 300 ms/step for the spectral method 
(no de-aliasing and two time step-marching scheme) at a resolution of 1282. Taking 
into account the differences between the time steps for the two cases, we find that 
almost the same computational work is required for both algorithms. However, for 
increasing values of N, the LBE should eventually become more efficient than the 
spectral method because of its favourable scaling ( N 2  instead of N 2  log, N ) .  

Another important point to be discussed is the performance of LBE in dealing with 
very high numerical resolutions, i.e. at high Reynolds number. In this case the main 
question to be answered is whether or not the L B E  is able to reproduce the statistical 
properties of two-dimensional turbulence, namely the enstrophy inertial range at high 
wavenumber. Actually the detailed knowledge of the enstrophy inertial range is still 
a matter of discussion in the recent literature (Benzi et al 1986, Legras et al 1988, 
Brachet et a1 1986). 

We have performed a high numerical resolution (at 512 x 512) to study whether or 
not an enstrophy inertial range can be detected by using the LBE.  The forcing is the 
same as that used in the previous experiments, while the Reynolds number is now 
increased by a factor of 7. In figure 3 we show the energy spectrum of our numerical 
results and in figure 4 we show the corresponding vorticity map. As one can see, no 
clear evidence of an inertial range can be observed in the spectrum, although a slope 
near k-4, k-5  could eventually be measured. This slope is much steeper than what has 
been observed in previous experiments at the same numerical resolution (Legras et a1 
1988). A possible explanation of this disagreement is the following. Legras er al(1988) 
used a superviscosity proportional to A' of the velocity field and an energy dissipation 
mechanism of the large scales, namely a term proportional to A - '  of the vorticity. The 
superviscosity increases the effective resolution of the numerical experiments by push- 
ing the dissipation range towards very large values of k. On the other hand, energy 
dissipation prevents energy pile-up towards low wavenumbers. Neither mechanism is 
included in our case. In particular, we think that the superviscosity is a rather crucial 
mechanism in order to obtain a well defined inertial range and we do not see how to 
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Figure 3. Energy spectra of the LBE simulation on a 5122 grid. 

Figure 4. Instantaneous vorticity map for a 512* LBE simulation. 

include such an effect in the LBE in a simple way. In our opinion, this is a rather clear 
limitation of the LBE, even though further theoretical work could improve the present 
situation. The piling up of energy at low wavenumbers can clearly be observed both 
from figures 3 and 4. In particular, in figure 4 we see a few major vortices and a 
number of vorticity lines showing well defined cusps: the large-scale vortices are 
consequences of the inverse energy cascade at low wavenumbers; cusps are regions of 
the fluid where enstrophy cascade to large wavenumbers is active. Therefore, despite 
the apparent disagreement between our results and those obtained by Legras et a1 
(1988), the overall picture of our numerical simulations is consistent with the known 
phenomenology of two-dimensional turbulence. 
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